
Journal of Organometallic Chemistry 
Elsevier Sequoia S.A., Lausanne 
Printed in The Netherlands 

PRELIMINARY COMMUNICATION 

PROPOSED n-COMPLEX INTERMEDIATES IN THE REACTIONS OF ORGANO- 
ALUMINUM COMPOUNDS WITH ALKYNES. THE BEHAVIOR OF tert-BUTYG 
PHENYLACETYLENE 

JOHN J. EISCH, RUDOLF AMTMANN and MICHAEL W. FOXTON 

Maloney Chemical Laboratory, The Catholic University ofAmerica. Washington, D.C. 20017(L?S.A.) 

(Received December 26th, 1968) 

In pioneering research W&e and Miiller established that not only does the triple 
bond of alkynes add carbon-aluminum or hydrogen-aluminum bonds (I)lr * , but that 
dialkylaluminum hydrides can effect reduction (I, E = H ), reductive dimerization (II) or 
cyclotrimerization of the alkyne, depending upon the alkyne: R; AlH ratio3 (eq. 1): 

R-CGC-R 
R;AlE 

E=H, R’ 
(1) 

(I) III) (III1 

As a reaction pathway it was suggested that II arises from I simply by the insertion of an 
alkyne unit selectively into the vinyl-aluminum bond. In turn, III was thought to result 
from a Die&Alder addition of alkyne to ii and the subsequent loss of R: AlH from the 
intermediate adduct3. The products I-III, then, were felt to result from three consecutive 
reactions. Parallel fmdings on the insertion of symmetrical alkynes into the carbon- 
aluminum bonds of Rs Al and R2 AlR’types were interpreted as supporting this 
concatenated scheme. 

As part of a program designed to shed light on the mechanism of alkyne-organ- 
aluminum interactions, the behavior of terminal4 and unsymmetrical alkynes” 6 toward 
R: AlH and toward (C6H5)3Al has been scrutinized in this Laboratory. We now find that 
the behavior of tert-butylphenylacetylene, taken together with our previous results with 
terminal alkynes4 and methylphenylacetylene’* 6, and with those of Wilke and Miiller’* ‘, 
can best be explained in terms of steric factors operative on an intermediate n-complex. 
At the same time, we propose that products I-III are not formed in the consecutive manner 
suggested by Wilke and Miiller, but that again a r-complex pathway presents a superior 
integration of the known facts. 

Thus, the hydrogen-aluminum bond of diisobutylaluminum hydride and the 
phenyl-aluminum bond oi triphenylahrminum add to the triple bond of tert-butylphenyl- 
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acetylene (IV) to place the R:Al group on different carbon atoms. Furthermore, the 
reductive dimer of IV is exclusively one isomer (eq. 2). Heating 0.014 mole of tert-butyl- 
phenylacetylene (IV) with 0.014 mole of diisobutylaluminum hydride in 15 ml dry heptane 
under a nitrogen atmosphere for 48 h, at 50° and then hydrolyzing gave 94% of cis$(tert- 
butyl)styrene’ (Va) and 6% of a white solid Via, m.p. 162-163O. Repetition of the 
reaction and work-up by treatment with deuterium oxide (99.8% pure) yielded Vb, 
completely and exclusively deuterated (NMR analysis) at the carbon 4! to the phenyl 
group, i.e. CgHSCD=CH(t-C4Hs) (eq. 2). There was no sign of deuterium at the carbon P 
to the phenyl group; therefore the Ri Al group had been attached only to the 01 carbon in Vc. 
The structure of Via was assigned as cis,cis-l,4di-t-butyl-2,3diphenyl-l,3-butadiene on 
the basis of proper elemental analyses, molecular weight, spectroscopic data, and the 
failure of attempted metallation with n-C4 HS L,i in ether. Heating Via at 200’ for 3h leads 
to the formation of a solid VII, m-p. 88.5” whose properties are consistent with trans-3,4- 
di-t-bu_tyl-1,2diphenylcyclobutene, presumably formed from Via by a thermal con- 
rotatory’ ring closureg. Other isomeric structures for Via can be rejected on the b&is of 
spectral or chemical properties. 

Upon heating to 100“ adduct Vc underwent 6% diadduct formation (VIII), 
yielding l-phenyl-3,3&methylbutane upon hydrolysis, and principally isomerization to 
IX (68%); prolonged heating at 140” led to 92% VIII and less than 1% of VI. Prolonged 
heating of Vc at 50° gave a modest increase in dimer (2+6%, 2 days). 

Heating IV with (CsHS)3Al in refluxing toluene gave, upon hydrolysis, > 95% 
1 ,l-diphenyl-3,3dimethyl-1-butene (X). The possibility of the 1,2-diphenyl isomer was 
dismissed, since the NMR spectrum of X was unchanged after attempted acid 
isomerization and since X yielded benzophenone upon chromic acid oxidation. 
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In trying to rationalize the mode of insertion of IV into the carbon-aluminum 
bonds of (CeHs)aAl or exclusively into the vinylic-aluminum bond of Vc, Stuart- 
Briegleb models of four-center transition states revealed no clear steric grounds for 
explaining these preferences. Although electronic factors demonstrably play a role in the 
addition of (CeHs)sAl to para-substituted tolanes, where steric factors are equalized’O, 
an electronic explanation for IV -+ X is unacceptable, since methylphenylacetylene adds 
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(CeHs)eAl in the reverse sense6 @?5%). In addition to these difficulties, an acceptable 
mechanism must accommodate the following remarkable aspects of the alkyne insertion 
and oligomerization (I-III) reactions of aluminum alkyls re3 : (a) Acetylene does not 
undergo metallation, but, in fact, participates more readily than ethylene in carbon- 
aluminum insertions. Monosubstituted alkynes, however, undergo metallation as a 
prominent course4. (b) The oligomerization sometimes proceeds to the dimeric or 
trimeric stage, but never beyond to tetrameric or higher stages. (c) Although acetylene 
itself inserts into the C4H, -Al bond of (~xB-C~H~)~A~ at 20°, 3-hexyne or tolane inserts 
exclwively at 60” into the vinyl-aluminum bond of I (R’ = isoX Hg ; R = C2 H5 or C6 H5 ). 
(d) Although acetylene inserts into the C, H5 -Al bond of (Cz H5)3 Al below 60° in a strict 
1:l ratio to yield diethyl(nans-l-butenyl)aluminum, 3-hexyne reacts with (C, Hs)sAl to 
yield upon hydrolysis exclusively I ,1,2,3,4-pentaethyl-1,3-butadiene. No triethylethylene- 
(3ethyL3-hex&e) was formed, regardless of the ratio of reactants. Conversely, 
(C, Hs)sAl reacted with tolane to yield only monoadduct (ethylstilbene) and never any 
penta-substituted butadiene. (e) Attempts to add triisobutylaluminum to 3-hexyne and to 
tolane at 80“ led to isobutylene evolution and to products of types I and II. (j) A Diels- 
Alder reaction on II as a route to III would demand that II assume a most hindered 
cisoid conformations. 

In the following proposal invoking n-complex intermediates (scheme l), it is 
postulated that vinylaluminurn compounds with a hydrogen his to the aluminum center 
may accomplish apparent “insertions” by forming ncomplex species (XI) (RI = larger 
group; Rg = smaller group): 

RiAlH RL\ Rs RL 

R,CSZR, - 

?G=zi- 
EC’ 

Ol- 

(CzC bond length: 1.20A ; 
Al c~voIt?nt raclius: 126 A J 

Of course, genuine alkyne insertions into carbon-aluminum bonds are welldocumented3* ‘, 
but t.hLis scheme recognizes that adduct Ia begins to dissociate into alkyne in the 
temperature range (50-90’) where apparent “insertion” occurs. Also, the exclusive 
insertion of alkyne in vinylic-aluminum bonds in II or Vc, and the lack of any isobutyl- 
aluminum insertion is accounted for (cX supra). 

L? Scheme 1: (a) the selectivity in the direction of carbon-aluminum or 
hydrogen-aluminum bond additions to alkynes is pricipally influenced by the steric 
perferences in disrupting the n-complex (eq. 4,s); (b) the apparent superior reactivity of 
vinylic-aluminum over alkyl-aluminum bonds is related to the ease of the former in 
forming the necessary intermediate XI; (c) the nature of the dimers in the reductive 
oligomerization of unsymmetrical alkynes can be rationalized in a clear fashion, as can the 
limitation of the oligomerization to the cyclic trimeric stage (eq.7c); (d) the heightened 
reactSty of acetylene over that of ethylene can be correlated with the stronger n-donor 
character of the former” ; the metallation of terminal acetylenes with the alignment of R’ 
in R3Al with the acetylenic hydrogen (eq.5); (e) the failure to find monoadducts (e.g., 
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Scheme 1. 

(C, H5 )e Al with 3-hexyne or (i-C4H9)e Al with tolane, eq.8) or 1:2 adducts (e.q., with 
(Ci Hs )&l and tolane) in certain cases is explicable, since the scheme {eq.4,6,7a,b,c) does 
not demand that the adducts have the consecutive relation given them by Wike and 
Miiller3; Q) the isomerization of the ck-adduct of IV to the rrans adduct (e.g., IX) 
prevents dissociation to alkyne and hence inhibits dimer formation (e.g., Vi), even at high 
temperatures; and (g) the cyclobutadiene pathway suggested in eq.7c should mean that 
organoaluminum compounds containing no Al-H bonds will also be able to trimerize 
alkynes via complexes like XI, XII in eq.7c. Indeed, when triphenylaluminum and di- 
phenylacetylene (1:2) are heated at 200” considerable amounts of hexaphenylbenzene are 
formed12. The similarity between this proposed pathway and a rational view of the 
trimerization of 2-butyne to hexamethyl-Dewar-benzene by aluminum chIoride13 is 
readily apparent. 
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